Ignorer la météo d’hier, c’est aussi louper celle de demain

image002Prévoir le temps est particulièrement difficile lorsque la circulation atmosphérique est instable. La météo de cette année en est un parfait exemple ! Pourtant, prédire avec fiabilité l’intensité et la trajectoire d’une tempête est nécessaire tant pour des raisons humaines qu’économiques. Pour augmenter cette fiabilité, Météo France a mis en service, dans les années 2000, des méthodes mathématiques d’assimilation de données, en particulier parce que ces méthodes auraient permis de mieux prévoir la tempête de 1999.
Lire la suite

L’engrais des villes

Mesures de réflectance, plaine de Versailles

Dans un contexte de maîtrise des ressources énergétiques, un enjeu majeur est la préservation de l’agriculture en région périurbaine. Le maintien de l’agriculture périurbaine et de ses bénéfices passe nécessairement par la préservation de son sol ; or les sols périurbains voient leur teneur en matière organique, essentielle pour garantir les rendements, diminuer de manière régulière. Diverses méthodes mathématiques couplées à des images satellitaires permettent aujourd’hui d’optimiser les apports en matières organiques.
Lire la suite

Quelle hauteur pour la digue ?

ce qu'on verra quand on passe la souris

La rupture de digues de protection peut avoir des conséquences catastrophiques (Teton, Idaho, le 5 juin 1976).

En France, de nombreuses constructions longent les cours d’eau. Leur protection contre les crues, provoquées par la fonte des glaciers ou par des épisodes de fortes pluies en amont des fleuves, doit être garantie sur le long terme. Acteur important du génie civil, EDF met en œuvre des approches mathématiques spécifiques pour prévoir l’apparition de ces phénomènes, puis pour dimensionner la hauteur des digues de protection.

Lire la suite

Mon littoral, c’est de la dynamique

aof_lobsterville_road

Une route rongée par la mer, près de Cape Cod, USA.

A l’heure du réchauffement climatique et de la montée du niveau des mers, l’évolution morphodynamique des zones côtières représente un enjeu majeur en matière de protection du littoral et d’aménagement du territoire. Cette dynamique littorale possède plusieurs particularités qui font que nous avons du mal à l’appréhender.  Lire la suite

Paysages urbains équilibrés

Pékin vu du ciel

Pékin vu du ciel.

Les villes existent depuis l’aube de l’histoire. Elles se sont de plus en plus développées et, en ce début de 3ème millénaire, constituent l’un des aspects les plus importants du paysage de la planète. Des chercheurs de nombreuses disciplines se sont confrontés à la question de la naissance des structures urbaines, et les modèles mathématiques peuvent aussi contribuer à les appréhender.

Lire la suite

Couches limites le long des côtes

Carte des courants marins

Carte des courants marins : on voit que les courants sont très localisés près des côtes (de l’équateur aussi, mais c’est un autre sujet !)

Pour comprendre la circulation des courants océaniques, les physiciens et les mathématiciens ont souvent recours à des modèles approchés : en effet, la multiplicité des phénomènes en jeu (rotation de la Terre, différences de salinité et de température, présence de plusieurs échelles spatiales) rend impossible toute tentative de description exhaustive, même avec les plus puissants des ordinateurs actuels.

Lire la suite

Simuler le son d’un piano

Vue éclatée d’un piano à queue.

La conception et la fabrication d’un piano sont très largement basées sur un savoir empirique issu de plusieurs siècles d’expérimentations, d’échecs et de succès. Les facteurs de piano ont acquis un ensemble de connaissances extrêmement précises mais cherchent désormais à rationaliser leur approche en utilisant des méthodes scientifiques, afin de donner raison ou tort à certaines affirmations et à améliorer leur compréhension des phénomènes mis en jeu.

Lire la suite

Distinguer des pathologies similaires

caractéristique maladi de Wengener

La présence d’ANCA (anticorps antineutrophiles cytoplasmiques) est une caractéristique de la  maladie de Wegener.

La maladie de Wegener et la polyangéite microscopique sont deux maladies auto-immunes rares qui présentent des symptômes similaires les rendant difficilement différentiables. Afin de faciliter leur diagnostic, on cherche des critères permettant de mettre les patients dans des groupes correspondant à ces différentes pathologies. Pour cela, une méthode statistique de classification a été mise au point. Celle-ci a abouti à une partition en 5 groupes cliniquement différents de ces patients. Est-ce un artefact dû à un choix malheureux de la méthode de classification choisie ?
Lire la suite

En forme optimale…

Simulation de ponts

L’optimisation structurale des ponts se fait aujourd’hui grâce à des simulations numériques poussées.

Quel lien existe-t-il entre le profil d’une aile d’avion et une bulle de savon ? Ou entre la silhouette d’un sous-marin furtif et la légendaire reine Didon qui fonda Carthage ? C’est l’optimisation de forme, qui vise à choisir la meilleure géométrie vis-à-vis d’un critère donné. Ainsi, les bulles de savon sont-elles sphériques lorsqu’elles s’envolent librement afin de minimiser leur surface. Quant aux ailes d’avion, elles sont dimensionnées de manière très précise afin d’améliorer les performances en vol (réduire la consommation de carburant, le bruit, etc.).

Lire la suite

Prédire les rejets d’azote agricole pour mieux les contrôler

Nitrates

Cycle de l’azote.

L’azote, élément chimique essentiel des agrosystèmes et des écosystèmes,  entre dans la composition de nombreux produits, notamment les fertilisants agricoles. Si l’azote est indispensable à la production agricole, son utilisation produit aussi des excédents rejetés dans l’atmosphère sous forme gazeuse (diazote) ou directement dans le sol par infiltration dans l’eau. Or, l’impact pour la planète de ces excédents peut être important : pollution de l’eau et de l’air, effet de serre (pour chaque kilogramme émis, le diazote contribue environ 300 fois plus au réchauffement climatique que la même masse de CO2), dégradation de la qualité des sols, détérioration des écosystèmes et de la biodiversité. Il est donc d’une importance primordiale d’estimer les rejets d’azote et de quantifier l’impact d’une modification des pratiques agricoles sur ces rejets.

Lire la suite

Géoïde, ellipsoïde et autres mots compliqués

Forme du géoïde : hauteur de cette surface au-dessus de l’ellipsoïde de référence ; la déformation est exagérée pour le dessin.

— Quelle est la forme de la Terre ?
— Ronde !
— Certes, mais plus précisément ?
— Une boule un peu aplatie aux pôles !
— Oui, mais pouvez-vous être plus précis ?

On connaît aujourd’hui la forme de la Terre avec une précision incroyable, de l’ordre du centimètre !

Lire la suite

Sir Ronald Fisher, biologiste ou mathématicien de génie ?

Ronald Fisher est un statisticien britannique considéré par certains comme « le meilleur biologiste évolutionnaire après Darwin ». C’est le non moins célèbre Richard Dawkins qui l’a suggéré en 1995 dans son livre « River out of Eden ».

Il naît en 1890 à Londres, en Angleterre. Après des études de mathématiques et de physique, il participe dès 1911 aux rencontres de la société eugéniste fondée par Galton et s’attaque aux problèmes statistiques que posent les travaux de Galton et Mendel en génétique des populations. Lire la suite

Richard Bellman et la programmation dynamique

Dyke

Richard Bellman (1920-1984).

Richard Bellman est né le 26 août 1920 à New York. À la fin de ses études universitaires à Baltimore, il est d’abord instructeur des armées avant d’être affecté  au projet Manhattan  entre 1944 et 1946. Il prépare ensuite une thèse sur les équations différentielles à Princeton sous la direction de Lefschetz et commence une carrière académique. Attiré par la théorie des nombres, il est aussi séduit par les défis mathématiques posés par les applications.

Lire la suite

Alexandre Liapounoff et sa célèbre thèse

450px-Lyapunov_monument_in_Odessa

Monument à la mémoire d’Alexandre Lyapunov à Odessa.

Alexandre Mikhaïlovitch Liapounoff (Lyapunov) consacra l’essentiel de sa vie à la science. Né en 1857, à Iaroslavl en Russie, il est le fils de l’astronome Mikhaïl Vasilievich Liapounoff. Il mourut à Odessa en 1918, se tirant une balle dans la tête le jour où sa femme, Natalia Rafaïlovna Setchenova, succomba à la tuberculose. On peut lire sur sa tombe : « Fondateur de la théorie de la stabilité du mouvement, auteur d’avancées sur les figures d’équilibre des fluides en rotation, de méthodes pour la théorie qualitative des équations différentielles, du théorème central limite en théorie des probabilités et d’autres études approfondies dans plusieurs domaines de la mécanique et de la statistique mathématique. »

Lire la suite

Pour le déminage humanitaire

Zone interdite à cause des mines non explosées (Kahoolawe, Hawai, oct 2003)

Zone interdite à cause des mines non explosées (Kahoolawe, Hawai, oct 2003)

Largement présentes, depuis la deuxième guerre mondiale, dans les conflits internationaux aussi bien que dans les conflits ethniques, les mines constituent une menace permanente pour la population civile longtemps après la fin des hostilités. Les mines qui ont été utilisées et n’ont pas explosé continuent de faire des ravages dans le monde entier.

La Campagne internationale pour interdire les mines (ICBL) évalue à près de 500 000 personnes les survivants d’accidents de mines et de restes explosifs de guerre. A ce jour, 80% des états du monde ont signé le Traité d’interdiction des mines. Parmi les résultats provenant de l’Observatoire des Mines 2013, on signale que 250 000 mines ont été retirées du sol grâce aux programmes de déminage en 2012.

Plusieurs ONG membres d’ICBL (Handicap International, Human Rights Watch, AFDH, HAMAP et beaucoup d’autres) sont engagées dans le déminage humanitaire, la sensibilisation aux risques des mines ou l’assistance aux victimes. Ces ONG signalent aussi les pays qui violent le traité interdisant les mines ; tout récemment elles évoquaient le Yemen et la Syrie.

Lire la suite

Pollution de l’air par les poussières : quelle part locale ?

Poussières d'usine

Poussières d’usine.

La poussière est constituée de fines particules en suspension dans l’air. C’est une des composantes de la pollution urbaine. La poussière présente dans l’air que nous respirons a deux origines : une part appelée locale, liée directement aux émissions locales (venant du trafic, du chauffage urbain, de l’industrie ou de l’agriculture), alors que le reste, qu’on appelle contribution de fond, est lié au transport à plus grande échelle (régionale ou nationale) de poussières émises ailleurs par l’activité humaine ou d’origine naturelle comme les embruns marins, le sable du désert ou encore les cendres volcaniques.

Lire la suite

Où vont les nuages ?

Image satellite MSG canal infrarouge, système nuageux convectif.

Image satellite de densité de glace au Pôle Nord.

Pour suivre le parcours d’un nuage dans une séquence d’images, il devrait suffire d’en connaître le contour, n’est-ce pas ? Certes, mais c’est tout sauf simple !

Lire la suite

Transport du « bébé plancton » le long des côtes françaises

Larves planctoniques

Pour de nombreux animaux de nos côtes, comme chez les moules, les crabes ou encore les bigorneaux, les adultes vivent sur les fonds marins et sont peu mobiles, tandis que les larves (les « bébés ») sont planctoniques et se laissent porter passivement par les courants. Ces larves sont très petites (de l’ordre de 0.2 millimètre) et produites en très grand nombre (plusieurs milliards à chaque ponte). A l’issue de leur vie larvaire (qui dure de quelques heures à plusieurs mois selon les espèces), les larves se sédentarisent si elles rencontrent un habitat favorable : elles seront alors capables de se métamorphoser en adulte ; sinon, elles mourront… Le transport de ces larves par les courants est donc une étape-clef pour la survie de ces populations côtières : il détermine ainsi en partie la distribution des espèces marines. Or il est très difficile, voire impossible, de suivre le devenir individuel de milliards de petites larves dans l’océan… Alors comment faire ?

Lire la suite

Fourier et la température de la Terre

Joseph Fourier (1768-1830)

Joseph Fourier (1768-1830) était un orphelin issu d’une famille pauvre qui devint l’un des plus grands scientifiques de son temps. Élève de la première promotion de l’École Normale Supérieure (ou plutôt l’École normale de l’an III), remarqué par Legendre et Monge, il y suivit également les cours de Lagrange et Laplace (voir les brèves à venir à leur sujet) avant de s’embarquer pour l’expédition d’Égypte. À son retour il fut nommé préfet de l’Isère par Napoléon, destitué à la Restauration, et finit par s’installer à Paris, au début comme membre du « bureau de statistique » (ancêtre de l’INSEE, créé en 1800 et supprimé en 1812). Bien que parfois décrié par ses contemporains pour son manque de rigueur mathématique, Fourier fut élu à l’Académie des sciences et en devint même le Secrétaire perpétuel. Lire la suite

Des modèles stochastiques pour simuler le temps

La production agricole dépend beaucoup du climat.

La variabilité climatique naturelle, ou résultant du changement climatique dû aux émissions de gaz à effet de serre, a été identifiée comme un facteur clé pour un grand nombre d’activités humaines et pour de nombreux systèmes étudiés en écologie et en environnement.

Lire la suite